Peter C. Burns

Faculty Director

Faculty Director
Email
pburns@nd.edu
Office
301W Stinson-Remick Hall
Website

Biography

Peter C. Burns has focused most of his research over the past decade on the solid-state chemistry, mineralogy, and environmental chemistry of uranium, as well as the transuranic elements neptunium and plutonium.

In 2005 the Burns research group published the first of a family of novel uranyl peroxide hydroxide spherical nanoclusters. To date, we have reported the synthesis and structures of nanoclusters containing 24, 28, 32, 40 and 50 uranium atoms. Additional papers will be forthcoming that report U16, U20 (multiple topologies), U24 (open), U36, U44 and U60. We will also be completing a "roadmap" for the synthesis of specific members of this complex family of actinide nano-scale clusters.

The Burns group has published extensively in uranium mineralogy, and has reported the crystal structures of dozens of uranyl minerals including autunite, bijvoetite, vandendriesscheite, wolsendorfite, boltwoodite, compreignacite, masuyite, haweeite, weeksite, fontanite, billietite, richetite, zippeite, and studtite.

The structure of studtite, reported by Burns and Kubatko (2003) is the first structure of a peroxide mineral, and the only one published to date. As reported by Kubatko et al. (2003) in Science, studtite forms in nature where radioactivity causes the formation of peroxide in water. Studtite was the first structure found that involved shared edges between any uranyl peroxide polyhedra, and the Burns group later developed a complex group of nano-structured uranium materials based upon this linkage.

The Burns group has examined the impacts of uranium mineralogy on the release of radionuclides from nuclear waste in a geological repository, such as Yucca Mountain. Much of the emphasis has been on neptunium, as it has a long half-life and is potentially mobile in the environment.

Burns has published extensively on borate mineralogy, copper minerals, and a variety of exotic new minerals. He has published structural hierarchies for borate minerals, sulfate minerals, inorganic uranium compounds, and inorganic neptunium compounds.